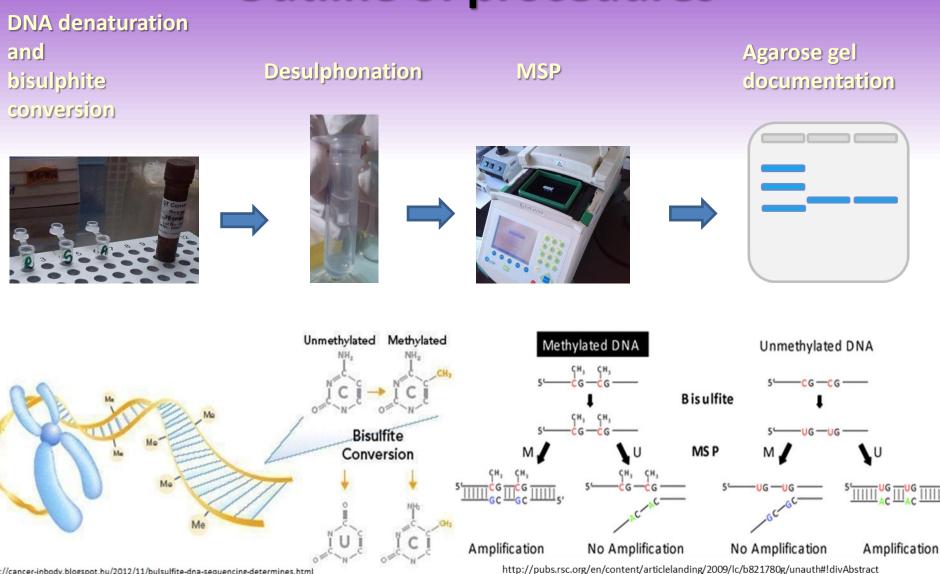

Methylation detection by PCR

Enikő Kis PCR training June 13-17, 2016


Epigenetic imprinting

- Different cells have different clusters of active genes – realisated partly by epigenetic modifications;
- There are two major epigenetic modifications linked to DNA: methylation and histonmodifications;
- Gene promoter methylation entails gene transcription repression (60-90% CpG islands are methylated in mammals) – e.g. genomic imprinting, X chromosome inactivation, repression of repetitive elements, cancer developement;
- Causes of abnormal promoter methylation might be: smoking, chemicals, vitamins, UV light, different nutritients;
- Methyltransferase activity maintains correct methylation.

Methylation Specific PCR

- In general, Methylation Specific PCR (MSP) and its related protocols are considered to be the most sensitive when interrogating the methylation status at a specific locus.
- DNA denaturation and bisulfite conversion processes are consolidated into one simple step.
- Following a short on-column cleaning, converted DNA is ready for downstream PCR applications.
- Differentiation between methylated and unmethylated strands is based on methylationspecific primers.

Outline of procedures

http://cancer-inbody.blogspot.hu/2012/11/bulsulfite-dna-sequencing-determines.html

Methylation PCR protocol 1.

Materials required:

- EZ DNA Methylation-Direct Kit (ZYMO RESEARCH)
- Dynazyme polymerase and Optimized buffer for Dynazyme polymerase
- DNase free water
- automatic pipettors (100μl, 1000μl)
- 200µl PCR tubes
- PCR apparatus

CT Conversion Reagent:

- powder reagent
- 900µl water
- 300µl M-Dilution Buffer
- 50µl M-Dissolving Buffer
- Mix thoroughly by vortex and by hand shaking for 10 minutes.
- Add 160µl M-Reaction Buffer and shake it for an other 1 minute.
- Storage: room temperature overnight/ 4°C for one week/
 -20°C for a month

Methylation PCR protocol 2.

Bisulfit conversion

Conversion mix:

- 20μl DNA (50pg 2μg, suggested amount: 1μg) RKO/SW480/A549 cell lines
- 130µl CT Conversion Reagent

Mix well, centifuge briefly

PCR conditions:

98°C 8min

53°C 3,5h

4°C 20h (max.)

Purifying converted DNA:

- add 600µl M-Binding Buffer to the filter
- add the sample and mix by inverting
- centrifuge at maximum speed for 30s
- discard the flow-through
- The converted DNA is now on the filter

- Wash with 100μl M-Wash
- Add 200µl M-Desulphonation Buffer to the column and incubate on room temperature for 15-20min
- Wash with 200µl M-Wash Buffer twice.

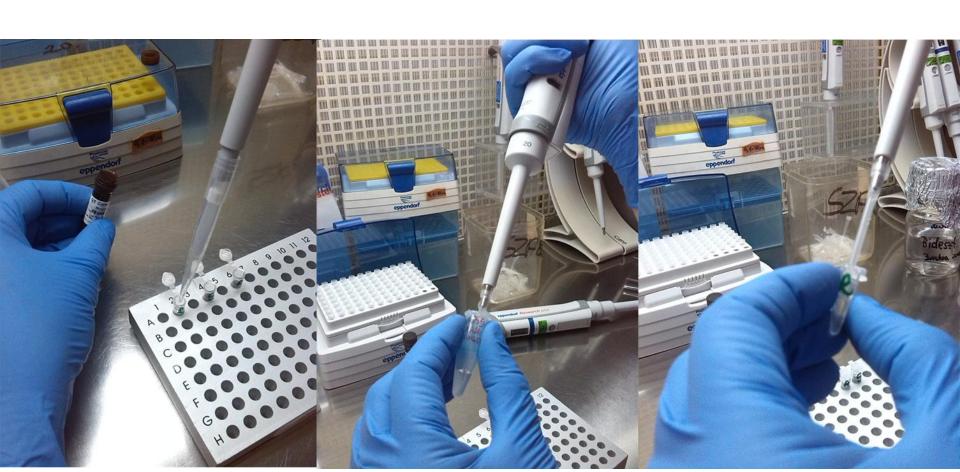
Elution:

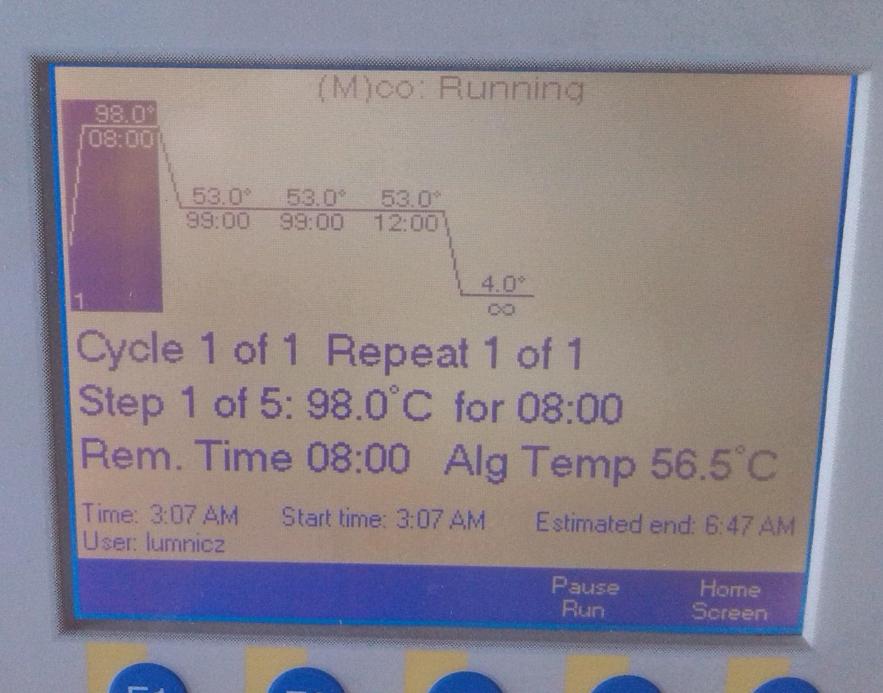
- Place the filter in a 1,5ml clean tube.
- Add 10µl M-Elution Buffer directly to the matrix.
- Centrifuge on maximum spin capacity for 30s – the clean DNA is now in the eluate.
- Store under -20°C

Bisulfit conversion

Conversion mix:

- 20μl DNA (50pg 2μg, suggested amount: 1μg)
- 130µl CT Conversion Reagent


Mix well, centrifuge briefly


PCR conditions:

98°C 8min

53°C 3,5h

4°C 20h (max.)

Elution:

- Place the filter in a 1,5ml clean tube.
- Add 10µl M-Elution Buffer directly to the matrix.

 Centrifuge on maximum spin capacity for 30s – the clean DNA is now in the eluate.

Store under -20°C

Methylation PCR protocol 3.

Methylation PCR

PCR mix:

2,5µl Optimalized Buffer for Dynazyme DNA polymerase

0,5µl 10 mM dNTP mix

1,5μl 12,5 pM MLH1 primer

(methylated, unmethylated allelspecific primers)

0,25µl enzim (Dynazyme)

15,25µl DNase free water

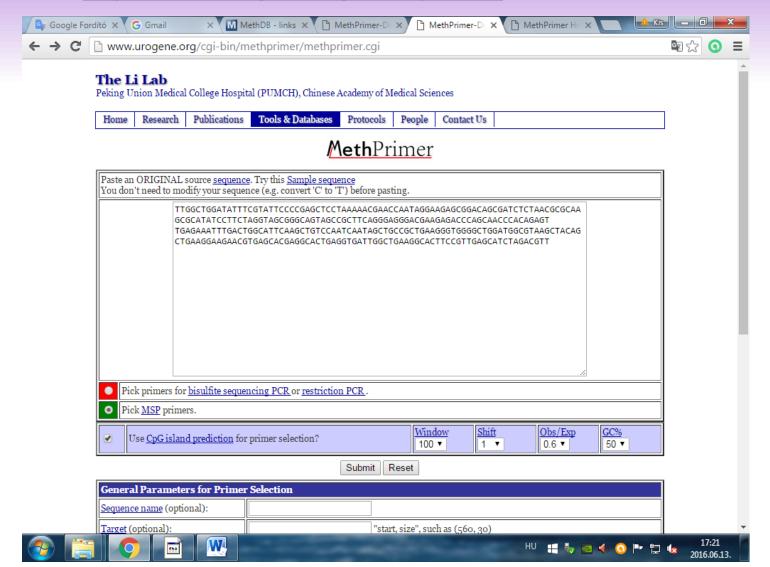
5μl DNA

Agarose Gel electrophresis

- Assemble a 3% agarose gel (3g agarose in 100ml 1xTBE buffer) as described in "Agarose gel electrophoresis protocol"
- 1xTBE puffer
- Mix 10μl DNA sample with 2μl electrophoresis dye
- Use 6µl 100bp Promega DNA ladder in the next well of the gel
- The product is around 150 bp (154 met, 135 unmet).

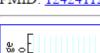
Methylation PCR

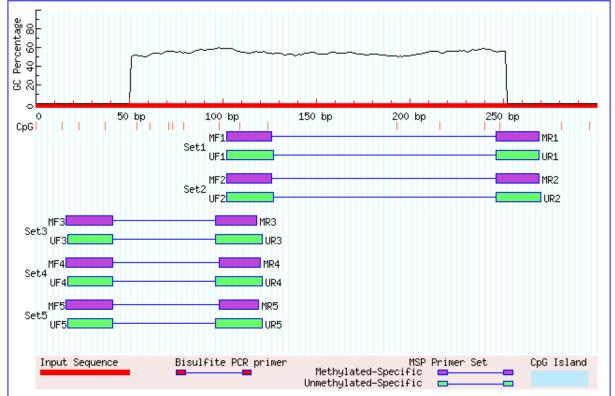
PCR mix:


- 2,5µl Optimized Buffer for DyNAzyme DNA polymerase
- **0,5μl** 10mM dNTP mix
- **1,5µl** 12,5pM MLH1 primer (methylated, unmethylated allel-specific primers)
- **0,25μl** DyNAzyme enzime
- **15,25μl** DNase free water
- **5μl** converted, purified DNA
- Hot start polymerases are strongly recommended as non-specific amplification is relatively common with bisulfite-converted DNA due to it being AT-rich

Primer specifity

- Specific primers are neaded for methylated and unmethylated promoter PCR.
- bisulfite PCR primers need to be long (usually between 26-30 bases).
- the amplicon size should be relatively short (between 150-300 bp).
- The specificity of the assay increases with the number of CpG pairs in the primer.
- Best "fit" primers usually contain CpG at the 3'-end of the primer.
- Annealing temperatures between 55-60°C usually work well.


Designing primers with MethPrimer


- http://www.methdb.de/links.html
- http://www.urogene.org/methprimer/

MethPrimer result

Please cite MethPrimer: Li LC and Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002 Nov;18(11):1427-31. PMID: 12424112

Sequence Name: Sequence Length: 300

CpG island prediction results Criteria used: Island size > 100, GC Percent > 50.0, Obs/Exp > 0.60 No CpG islands were found in your sequence Primer picking results for methylation specific PCR (MSP)

CpG island prediction results Criteria used: Island size > 100, GC Percent > 50.0, Obs/Exp > 0.60 No CpG islands were found in your sequence https://eu.idtdna.com/site Primer picking results for methylation specific PCR (MSP) Primer Start Size Tm 'C's Sequence 1 Left M primer 102 24 58.71 66.67 GTAGTAGTCGTTTTTAGGGAGGGAC Right M primer 23 59.78 60.87 ACCAATCACCTCAATACCTCGTA Product size: 168, Tm: 70.2 Left U primer 25 102 58.64 68.00 GTAGTAGTTGTTTTAGGGAGGGATG 57.51 Right U primer 23 60.87 ACCAATCACCTCAATACCTCATA Product size: 168, Tm: 67.6 2 Left M primer 102 24 58.71 66.67 GTAGTAGTCGTTTTAGGGAGGGAC Right M primer 23 59.78 60.87 ACCAATCACCTCAATACCTCGTA Product size: 168, Tm: 70.2 68.00 Left U primer 102 25 GTAGTAGTTGTTTTAGGGAGGGATG 58.64 Right U primer 270 24 58.82 58.33 AACCAATCACCTCAATACCTCATA Product size: 169, Tm: 67.5 3 Left M primer 16 25 57.37 48.00 GTATTTTTCGAGTTTTTAAAAACGA 1 TTGGCTGGATATTTCGTATTCCCCGAGCTCCTAAAAACGAACCAATAGGAAGAGCGGACA Right M primer 22 58.91 68.18 CCTAAAACGACTACTACCCGCT 118 [[]]:[][][]++[][]:::++[]:[::[][]++[]::[][][]++[]: Product size: 103, Tm: 68.0 Left U primer 17 24 52.60 45.83 TATTTTTTGAGTTTTTAAAAATGA 1 TTGGTTGGATATTTCGTATTTTTCGAGTTTTTAAAAACGAATTAATAGGAAGAGCGGATA Right U primer 25 58.37 68.00 CTCCCTAAAACAACTACTACCCACT 121 Product size: 105, Tm: 64.7 4 Left M primer 25 57.37 48.00 GTATTTTTCGAGTTTTTAAAAACGA 16 22 59.56 Right M primer 68.18 TCCCTAAAACGACTACTACCCG 120 61 GCGATCTCTAACGCGCAAGCGCATATCCTTCTAGGTAGCGGGCAGTAGCCGCTTCAGGGA Product size: 105, Tm: 68.2 Left U primer 24 52.60 45.83 TATTTTTGAGTTTTTAAAAATGA 17 Right U primer 121 25 58.37 68.00 CTCCCTAAAACAACTACTACCCACT 61 GCGATTTTTAACGCGTAAGCGTATATTTTTTTAGGTAGCGGGTAGTAGTCGTTTTAGGGA Product size: 105, Tm: 64.7 5 Left M primer 25 57.37 GTATTTTTCGAGTTTTTTAAAAACGA 48.00 Right M primer 119 21 57.84 71.43 CCCTAAAACGACTACTACCCG Product size: 104, Tm: 67.9 24 121 GGGACGAAGAGCCCAGCAACCCACAGAGTTGAGAAATTTGACTGGCATTCAAGCTGTCC Left U primer 17 52.60 45.83 TATTTTTTGAGTTTTTTAAAAATGA Right U primer 121 25 58.37 68.00 4 CTCCCTAAAACAACTACTACCCACT Product size: 105, Tm: 64.7 >>>>> >>>>> 241 CGTGAGCACGAGGCACTGAGGTGATTGGCTGAAGGCACTTCCGTTGAGCATCTAGACGTT 241 CGTGAGTACGAGGTATTGAGGTGATTGGTTGAAGGTATTTTCGTTGAGTATTTAGACGTT

Sequence Name: MLH1 Promoter

Sequence Length: 300

Primers used:

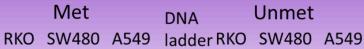
MLH1 gene promoter

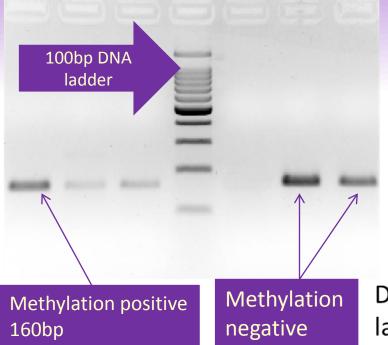
```
TTGGCTGGATATTTCGTATTCCCCGAGCTCCTAAAAAACGAACCAATAGGA -251
AGAGCGGACAGCGATCTCTAACGCGCAAGCGCATATCCTTCTAGGTAGCG -201
GGCAGTAGCCGCTTCAGGGAGGGACGAAGAGACCCAGCAACCCACAGAGT -151
TGAGAAATTTGACTGGCATTCAAGCTGTCCAATCAATAGCTGCCGCTGAA -101
GGGTGGGGCTGGATGGCGTAAGCTACAGCTGAAGGAAGAACGTGAGCACG -51
AGGCACTGAGGTGATTGGCTGAAGGCACTTCCGTTGAGCATCTAGACGTT -1
```

- F M primer: 5' GAGCGGATAGCGATTTTTAAC 3'
- R M primer: 5' CAACCCCACCCTTCAACG 3'
- F U primer: 5' AGGAAGAGTGGATAGTGATTTTTAAT 3'
- R U primer: 5' CAACCCCACCCTTCAACA 3'
- MJ Baek, H Kang, SE Kim, JH Park, JS Lee, Y-K Paik and H Kim: Expression of hMLH1 is inactivated in the gastric adenomas with enhanced microsatellite instability. In. *British Journal of Cancer* (2001) 85(8), 1147–1152

Cycle 1 of 4 Repeat 1 of 1 Step 1 of 1: 94.0°C for 02:00 Rem. Time 02:00 Alg Temp 39.9°C

PCR settings


94°C 2min 94°C 30sec 60°C 30sec 72°C 30sec 72°C 10min


Hold temperature at 4°C

Agarose Gel electrophresis

- Assemble a 3% agarose gel
 - (3g agarose in 100ml 1xTBE buffer) as described in "Agarose gel electrophoresis protocol for DNA"
- 1xTBE puffer
- Mix 10μl DNA sample with 2μl electrophoresis dye.
- Use 6μl 100bp Promega DNA ladder in the next well of the gel.
- The product is around 160bp (160bp methylated, 165bp – unmethylated).

Agarose gel electroforesis

165bp

HNSCC patients' normal and tumor tissue samples

DNA ZD19T ZD19N IF21T IF21N SW480 RKO ladder U M U M U M U M U M U M U M

Evaluation of the results

- RKO cell line is a methylation positive control
- SW480 is a methylation negative control
- The -229 CpG of the MLH1 gene promoter is not methylated in A549 cell line.
- Promoter of MLH1 is not methylated at this point in tumor samples of the HNSCC patients.

Limitations of the method

- 5-Hydroxymethylcytosine does not convert by bisulfite sequencing – false positive results
- Incomplete conversion brings bias to the results –
 DNA denaturation is critical
- DNA degradation during conversion via depurination and random strand breaks – unspecific stripes on gel or absence of product
- Incomplete desulphonation of pyrimidine residues might compromise polymerase enzimes


Other methods for methylation research

- Direct sequencing
- Pyrosequencing
- Methylation-sensitive single-strand conformation analysis
- High resolution melting analysis (HRM)
- Methylation-sensitive single-nucleotide primer extension
- Base-specific cleavage/MALDI-TOF
- Microarray-based methods

Literature

- Bisulfite DNA Sequencing Determines Base Methylation in Epigenetics Research
 http://cancer-inbody.blogspot.hu/2012/11/bulsulfite-dna-sequencing-determines.html
 (2012.11.22 downloaded: 2016.05.25)
- JAMES G. HERMAN*t, JEREMY R. GRAFF*, SANNA MYOHANEN*, BARRY D. NELKIN*, AND STEPHEN B. BAYLIN*t: Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA Vol. 93, pp. 9821-9826, September 1996 Medical Sciences
- http://link.springer.com/protocol/10.1007%2F978-1-61779-316-5_3#page-1

Thank You for Your Attention!

